Fidest – Agenzia giornalistica/press agency

Quotidiano di informazione – Anno 31 n° 321

Seminario di Fisica Matematica – E. Runa

Posted by fidest press agency su domenica, 12 novembre 2017

olimpiadi-matematica-cesenatico_largeRoma Martedì 14 Novembre 2017, ore 14:30 Dipartimento di Matematica e Fisica, Aula 311 Largo San Leonardo Murialdo 1 Exact periodic stripes for minimizers of a local/non-local interaction functional in general dimension E. Runa (Max-Planck-Institute for Mathematics in the Sciences, Leipzig) Abstract In this talk we will consider a functional consisting of a perimeter term and a non-local term which are in competition. In the discrete setting such functional was introduced by Giuliani, Lebowitz, Lieb and Seiringer. We show that the minimizers of such functional are optimal periodic stripes for both the discrete and continuous setting. In the discrete setting, such behaviour has been shown by Giuliani and Seiringer using different techniques for a smaller range of exponents. One striking feature of the functionals is that the minimizers are invariant under a smaller group of symmetries than the functional itself. In the continuous setting, to our knowledge this is the first example of a model with local/nonlocal terms in competition such that the functional is invariant under permutation of coordinates and the minimizers display a pattern formation which is one dimensional. This model has many similarities with the celebrated Ohta-Kawasaki functional. In particular for Ohta-Kawasaki functional, the minimality of periodic stripes is conjectured. This work is in collaboration with Sara Daneri.

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo di WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione /  Modifica )

Google photo

Stai commentando usando il tuo account Google. Chiudi sessione /  Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione /  Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione /  Modifica )

Connessione a %s...

 
%d blogger hanno fatto clic su Mi Piace per questo: